$\beta = 107.282 \ (4)^{\circ}$ $\gamma = 90.459 \ (4)^{\circ}$ $V = 1155.9 \ (1) \ \text{\AA}^3$

Mo $K\alpha$ radiation

 $0.32 \times 0.27 \times 0.23 \text{ mm}$

7153 measured reflections

4041 independent reflections

2933 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

 $\mu = 0.81 \text{ mm}^{-1}$

T = 292 K

 $R_{\rm int} = 0.028$

refinement

 $\Delta \rho_{\rm max} = 0.97 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -1.00 \text{ e } \text{\AA}^{-3}$

Z = 1

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(μ -3,5-dinitro-2-oxidobenzoato)- $\kappa^{3}O^{1},O^{2}:O^{1};\kappa^{3}O^{1}:O^{1},O^{2}$ -bis[aqua(2-phenyl-1,3,7,8-tetraazacyclopenta[*I*]-phenanthrene- $\kappa^{2}N^{7},N^{8}$)cobalt(II)]

Xiang-Cheng Wang, Jing Chen, Chun-Jie Wang and Chun-Xiang Li*

School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China Correspondence e-mail: yys@ujs.edu.cn

Received 27 April 2010; accepted 13 May 2010

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.006 Å; R factor = 0.044; wR factor = 0.111; data-to-parameter ratio = 10.7.

In the title compound, $[Co_2(C_7H_2N_2O_7)_2(C_{19}H_{12}N_4)_2(H_2O)_2]$, the Co^{II} atom is six-coordinated by two N atoms from a 2-phenyl-1*H*-1,3,7,8,-tetraazacyclopenta[*l*]phenanthrene (*L*) ligand, three O atoms from two 3,5-dinitro-2-oxidobenzoate (3,5-dinitrosalicylate or DNSA) ligands and one O atom from a water molecule in a distorted octahedral geometry. The Co^{II} atoms are bridged by two carboxylate O atoms from two DNSA ligands, forming a centrosymmetric dinuclear structure. Neighbouring dinuclear units interact with each other through two types of π - π interactions between the *L* ligands [shortest centroid–centroid distance = 3.646 (3) Å] and between the *L* and DNSA ligands [shortest atom-to-centroid distance = 3.794 (3) Å]. N-H···O, O-H···N and O-H···O hydrogen bonds are observed, which lead to a threedimensional structure.

Related literature

For general background to metal–organic coordination polymers, see: Che *et al.* (2008). For a related structure, see: Liu *et al.* (2009). For the ligand synthesis, see: Steck & Day (1943).

Experimental

Crystal data

$Co_2(C_7H_2N_2O_7)_2(C_{19}H_{12}N_4)_2$	
$(H_2O)_2]$	
$M_r = 1198.76$	
Friclinic, $P\overline{1}$	
a = 8.2943 (4) Å	
b = 11.0232 (5) Å	
c = 13.6139 (7) Å	
$\alpha = 102.690 \ (4)^{\circ}$	

Data collection

Oxford Diffraction Gemini R Ultra CCD diffractometer Absorption correction: multi-scan (*CrysAlis RED*; Oxford Diffraction, 2006) $T_{\rm min} = 0.771, T_{\rm max} = 0.829$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.111$ S = 1.004041 reflections 378 parameters 168 restraints

Table 1

Selected	bond	lengths	(Å).
----------	------	---------	------

Co-N1	2.102 (3)	Co-O1 ⁱ	2.216 (3)
Co-N2	2.095 (3)	Co-O3	1.991 (3)
Co-O1	2.050 (2)	Co-OW1	2.139 (3)

Symmetry code: (i) -x, -y, -z + 1.

Tabl	e	2	
TT 1			1

yd	rogen-	bond	geome	etry	(A,	0)
	yd	ydrogen-	ydrogen-bond	ydrogen-bond geome	ydrogen-bond geometry	ydrogen-bond geometry (A,	ydrogen-bond geometry (A, °)

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N4-H4\cdots O6^{ii}$ $OW1-H1WA\cdots N3^{iii}$ $OW1-H1WB\cdots O2^{iv}$	0.86	2.17	2.948 (5)	150
	0.81 (6)	2.03 (6)	2.831 (5)	172 (5)
	0.80 (5)	1.88 (5)	2.662 (4)	165 (5)

Symmetry codes: (ii) x - 1, y, z - 1; (iii) -x, -y + 1, -z + 1; (iv) -x + 1, -y, -z + 1.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2006); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2006); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXTL*

metal-organic compounds

(Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL* and *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *SHELXTL*.

The authors thank Jiangsu University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2303).

References

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Che, G.-B., Liu, C.-B., Liu, B., Wang, Q.-W. & Xu, Z.-L. (2008). CrystEngComm, 10, 184–191.

- Liu, D.-M., Li, X.-Y., Wang, X.-C., Li, C.-X. & Liu, C.-B. (2009). Acta Cryst. E65, 01308.
- Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Steck, E. A. & Day, A. R. (1943). J. Am. Chem. Soc. 65, 452-456.

Acta Cryst. (2010). E66, m751-m752 [doi:10.1107/S1600536810017629]

 $Bis(\mu-3,5-dinitro-2-oxidobenzoato)-\kappa^3 O^1, O^2: O^1; \kappa^3 O^1: O^1, O^2-bis[aqua(2-phenyl-1,3,7,8-tetraazacyclopenta[l]phenanthrene-\kappa^2 N^7, N^8) cobalt(II)]$

X.-C. Wang, J. Chen, C.-J. Wang and C.-X. Li

Comment

Metal-organic coordination polymers have attracted increasing interest over the past decade because of their intriguing structures and tremendous potential applications in catalysis, molecular adsorption, nonlinear optics, magnetism, and so on (Che *et al.*, 2008). 1,10-Phenanthroline (phen) has been widely used to build supramolecular architectures owing to its excellent coordinating ability and large conjugated system. However, building blocks derived from the appropriate modification of phen, such as 2-phenyl-1*H*-1,3,7,8-tetra-azacyclopenta[1]phenanthrene (*L*) have received considerably less attention (Liu *et al.*, 2009). Hereby, we have prepared the title compound based on *L* and 3,5-dinitrosalicylic acid (H₂DNSA) ligands.

In the title compound, the Co^{II} atom is six-coordinated by two N atoms from one *L* ligand, four O atoms from two DNSA ligands and one water molecule (Fig. 1). The Co—O distances range from 1.991 (3) to 2.216 (3) Å and the Co—N lengths are 2.095 (3) and 2.102 (3) Å (Table 1). The N1, N2, O1, O3 atoms comprise the equatorial plane, while the O1ⁱ and OW1 atoms occupy the axial position [symmetry code: (i) -x, -y, 1-z]. A carboxylate O atom and the hydroxy O atom of the DNSA ligand coordinate to one Co atom, and this carboxylate O atom bridges the other Co atom, forming a dinuclear structure. The two nitro groups are uncoordinated.

It is noteworthy that various hydrogen bonds interactions are observed in the title compound. (a) An N—H···O hydrogen bond between the imidazole ring donor and the nitro group of the DNSA ligand (Table 2). (b) O—H···N or O—H···O hydrogen bonds involving the coordinated water molecule OW1 and the imidazole N3 and carboxylate O2 atoms (Table 2). In addition, two types of π - π stacking interactions further intensify the architectures. One is the offset face-to-face π - π interactions between the *L* ligands with the shortest centroid–centroid distance of 3.646 (3) Å, while the other exists between the *L* and DNSA ligands [shortest atom-to-centroid distance = 3.794 (3) Å] (Fig. 2), which lead to a three-dimensional supramolecular structure (Fig. 3).

Experimental

The *L* ligand was synthesized according to the literature method (Steck & Day, 1943). The title compound was synthesized under hydrothermal conditions. A mixture of *L* (0.06 g, 0.2 mmol), H₂DNSA (0.048 g, 0.2 mmol), Co(NO₃)₂ (0.036 g, 0.2 mmol) and water (10 ml) in a mole ratio 1:1:1:5000 was placed in a 25 ml Teflon-lined autoclave and heated for 3 d at 433 K under autogenous pressure. Upon cooling and opening the bomb, yellow block-shaped crystals were obtained, washed with H₂O and dried in air (yield 45% based on Co).

Refinement

H atoms on C and N atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 and N—H = 0.86 Å and with $U_{iso}(H) = 1.2U_{eq}(C,N)$. H atoms of water molecule were located from a difference Fourier map and their positions and U_{iso} values were refined freely.

Figures

Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (A) -x, -y, -z+1.]

Fig. 2. View of the one-dimensional supramolecular chain generated by π - π interactions (dashed lines). H atoms except those of water molecules have been omitted for clarity.

Fig. 3. View of a three-dimensional supramolecular structure with hydrogen bonds indicated by dotted lines. Most H atoms have been omitted.

 $Bis(\mu-3,5-dinitro-2-oxidobenzoato)-\kappa^3O^1,O^2:O^1;\kappa^3O^1:O^1,O^2-bis[aqua(2-phenyl-1,3,7,8-tetraazacyclopenta[/]phenanthrene- \kappa^2N^7,N^8)cobalt(II)]$

Crystal data	
$[Co_2(C_7H_2N_2O_7)_2(C_{19}H_{12}N_4)_2(H_2O)_2]$	Z = 1
$M_r = 1198.76$	F(000) = 610
Triclinic, <i>P</i> T	$D_{\rm x} = 1.722 \text{ Mg m}^{-3}$ $D_{\rm m} = 1.722 \text{ Mg m}^{-3}$ $D_{\rm m}$ measured by not measured
Hall symbol: -P 1	Mo Ka radiation, $\lambda = 0.71073$ Å
<i>a</i> = 8.2943 (4) Å	Cell parameters from 3653 reflections
b = 11.0232 (5) Å	$\theta = 4.4 - 25^{\circ}$
c = 13.6139 (7) Å	$\mu = 0.81 \text{ mm}^{-1}$
$\alpha = 102.690 \ (4)^{\circ}$	T = 292 K
$\beta = 107.282 \ (4)^{\circ}$	Block, yellow
$\gamma = 90.459 \ (4)^{\circ}$	$0.32 \times 0.27 \times 0.23 \text{ mm}$
$V = 1155.9 (1) \text{ Å}^3$	
Data collection	
Oxford Diffraction Gemini R Ultra CCD	4041 independent reflections

2933 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.028$

diffractometer	
Radiation source: fine-focus sealed tube	
graphite	

ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 4.4^{\circ}$
Absorption correction: multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2006)	$h = -9 \rightarrow 9$
$T_{\min} = 0.771, T_{\max} = 0.829$	$k = -13 \rightarrow 11$
7153 measured reflections	$l = -14 \rightarrow 16$
Refinement	
	Primary atom site location:

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.111$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.00	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0638P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
4041 reflections	$(\Delta/\sigma)_{\rm max} = 0.002$
378 parameters	$\Delta \rho_{max} = 0.97 \text{ e} \text{ Å}^{-3}$
168 restraints	$\Delta \rho_{min} = -1.00 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	-0.0231 (5)	0.3815 (4)	0.6428 (3)	0.0304 (9)
H1	0.0452	0.3635	0.7049	0.037*
C2	-0.1233 (6)	0.4828 (4)	0.6499 (3)	0.0346 (10)
H2	-0.1214	0.5307	0.7157	0.041*
C3	-0.2237 (5)	0.5105 (4)	0.5595 (3)	0.0336 (9)
Н3	-0.2911	0.5774	0.5631	0.040*
C4	-0.2245 (5)	0.4375 (4)	0.4614 (3)	0.0286 (8)
C5	-0.3250 (5)	0.4543 (4)	0.3592 (3)	0.0299 (8)
C6	-0.3182 (5)	0.3757 (4)	0.2679 (3)	0.0311 (9)
C7	-0.2138 (5)	0.2745 (4)	0.2631 (3)	0.0277 (8)
C8	-0.1991 (5)	0.1923 (4)	0.1726 (3)	0.0344 (9)
H8	-0.2600	0.2020	0.1058	0.041*
С9	-0.0946 (6)	0.0974 (4)	0.1829 (3)	0.0369 (10)
Н9	-0.0838	0.0422	0.1233	0.044*
C10	-0.0049 (5)	0.0841 (4)	0.2834 (3)	0.0325 (9)
H10	0.0650	0.0189	0.2895	0.039*
C11	-0.1165 (5)	0.2559 (4)	0.3627 (3)	0.0247 (8)
C12	-0.1215 (5)	0.3373 (3)	0.4607 (3)	0.0249 (8)
C13	-0.4998 (5)	0.5157 (4)	0.2329 (3)	0.0322 (9)
C14	-0.6334 (5)	0.5801 (4)	0.1703 (3)	0.0356 (9)
C15	-0.6963 (6)	0.6831 (4)	0.2208 (4)	0.0438 (11)
H15	-0.6518	0.7137	0.2935	0.053*
C16	-0.8264 (7)	0.7403 (5)	0.1618 (4)	0.0546 (13)
H16	-0.8696	0.8091	0.1957	0.066*

C17	-0.8916 (7)	0.6973 (5)	0.0553 (4)	0.0606 (14)
H17	-0.9787	0.7365	0.0167	0.073*
C18	-0.8286 (7)	0.5960 (6)	0.0052 (4)	0.0619 (15)
H18	-0.8723	0.5671	-0.0677	0.074*
C19	-0.7008 (7)	0.5364 (5)	0.0621 (4)	0.0511 (13)
H19	-0.6599	0.4668	0.0276	0.061*
C20	0.3815 (5)	-0.0284 (4)	0.6442 (3)	0.0269 (8)
C21	0.5087 (5)	-0.0973 (4)	0.6896 (3)	0.0328 (9)
H21	0.5419	-0.1637	0.6466	0.039*
C22	0.5884 (5)	-0.0697 (4)	0.7980 (3)	0.0368 (9)
C23	0.5475 (5)	0.0299 (4)	0.8637 (3)	0.0360 (9)
H23	0.6050	0.0499	0.9358	0.043*
C24	0.4202 (5)	0.0997 (4)	0.8213 (3)	0.0323 (9)
C25	0.3257 (5)	0.0739 (4)	0.7106 (3)	0.0265 (8)
C26	0.2996 (5)	-0.0712 (4)	0.5268 (3)	0.0271 (8)
N1	-0.0218 (4)	0.3109 (3)	0.5517 (2)	0.0254 (7)
N2	-0.0149 (4)	0.1606 (3)	0.3706 (2)	0.0250 (6)
N3	-0.4378 (4)	0.5429 (3)	0.3369 (3)	0.0324 (8)
N4	-0.4312 (4)	0.4167 (3)	0.1875 (3)	0.0321 (8)
H4	-0.4538	0.3850	0.1209	0.039*
N5	0.7161 (5)	-0.1487 (4)	0.8424 (3)	0.0484 (9)
N6	0.3854 (5)	0.2056 (4)	0.8942 (3)	0.0446 (9)
01	0.1485 (3)	-0.0397 (2)	0.4865 (2)	0.0305 (5)
O2	0.3743 (4)	-0.1379 (3)	0.4735 (2)	0.0459 (8)
03	0.2036 (4)	0.1369 (3)	0.6762 (2)	0.0339 (5)
O4	0.7338 (5)	-0.2469 (4)	0.7867 (3)	0.0650 (9)
05	0.8033 (5)	-0.1117 (4)	0.9352 (3)	0.0691 (10)
O6	0.4661 (6)	0.2254 (4)	0.9869 (3)	0.0813 (11)
07	0.2851 (6)	0.2779 (4)	0.8644 (3)	0.0857 (10)
OW1	0.3241 (4)	0.2215 (3)	0.5222 (3)	0.0345 (5)
Co	0.09090 (7)	0.14151 (5)	0.52610 (4)	0.0264 (2)
H1WA	0.362 (7)	0.285 (6)	0.566 (5)	0.064 (18)*
H1WB	0.407 (7)	0.184 (5)	0.523 (4)	0.058 (16)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C1	0.034 (2)	0.031 (2)	0.0251 (15)	0.0072 (17)	0.0071 (17)	0.0072 (14)
C2	0.041 (3)	0.031 (2)	0.0312 (16)	0.0091 (18)	0.0129 (18)	0.0042 (17)
C3	0.032 (2)	0.031 (2)	0.0381 (15)	0.0114 (19)	0.0118 (18)	0.0079 (15)
C4	0.027 (2)	0.0249 (19)	0.0326 (12)	0.0062 (16)	0.0055 (16)	0.0089 (14)
C5	0.026 (2)	0.027 (2)	0.0351 (13)	0.0054 (16)	0.0042 (16)	0.0115 (14)
C6	0.027 (2)	0.035 (2)	0.0308 (14)	0.0071 (17)	0.0025 (16)	0.0133 (14)
C7	0.024 (2)	0.0286 (19)	0.0279 (13)	0.0026 (15)	0.0021 (15)	0.0094 (14)
C8	0.036 (3)	0.040 (2)	0.0254 (16)	0.0039 (18)	0.0045 (18)	0.0088 (15)
C9	0.040 (3)	0.041 (2)	0.0267 (14)	0.0078 (19)	0.0101 (18)	0.0022 (17)
C10	0.029 (2)	0.037 (2)	0.0295 (13)	0.0080 (19)	0.0082 (17)	0.0038 (15)
C11	0.020 (2)	0.0269 (19)	0.0264 (12)	0.0036 (15)	0.0042 (15)	0.0091 (13)

C12	0.021 (2)	0.0230 (18)	0.0279 (12)	0.0032 (15)	0.0026 (15)	0.0069 (13)
C13	0.031 (2)	0.030 (2)	0.0349 (14)	0.0058 (16)	0.0057 (16)	0.0121 (16)
C14	0.030 (2)	0.036 (2)	0.0398 (16)	0.0072 (17)	0.0048 (16)	0.0158 (16)
C15	0.044 (3)	0.036 (2)	0.049 (2)	0.011 (2)	0.008 (2)	0.0137 (18)
C16	0.048 (3)	0.047 (3)	0.072 (2)	0.021 (2)	0.014 (2)	0.025 (2)
C17	0.046 (3)	0.070 (3)	0.069 (2)	0.023 (3)	0.005 (2)	0.041 (2)
C18	0.058 (4)	0.074 (4)	0.045 (2)	0.015 (3)	-0.005 (2)	0.024 (2)
C19	0.050 (3)	0.059 (3)	0.0401 (16)	0.018 (2)	0.005 (2)	0.0139 (19)
C20	0.019 (2)	0.029 (2)	0.0318 (13)	0.0034 (15)	0.0040 (13)	0.0095 (14)
C21	0.025 (2)	0.035 (2)	0.0384 (15)	0.0094 (17)	0.0063 (16)	0.0134 (16)
C22	0.024 (2)	0.047 (2)	0.0400 (16)	0.0079 (18)	0.0040 (16)	0.0203 (16)
C23	0.027 (2)	0.051 (2)	0.0278 (19)	0.0026 (18)	-0.0005 (17)	0.0160 (16)
C24	0.025 (2)	0.042 (2)	0.0263 (13)	0.0014 (17)	0.0010 (14)	0.0089 (14)
C25	0.022 (2)	0.031 (2)	0.0252 (13)	0.0047 (15)	0.0029 (14)	0.0104 (13)
C26	0.0219 (17)	0.0223 (19)	0.0328 (14)	0.0051 (15)	0.0040 (12)	0.0035 (14)
N1	0.0257 (17)	0.0237 (14)	0.0258 (11)	0.0052 (13)	0.0052 (13)	0.0070 (11)
N2	0.0223 (16)	0.0260 (15)	0.0258 (10)	0.0044 (12)	0.0052 (12)	0.0071 (11)
N3	0.032 (2)	0.0288 (17)	0.0350 (13)	0.0090 (15)	0.0051 (15)	0.0109 (13)
N4	0.033 (2)	0.0336 (18)	0.0272 (14)	0.0092 (15)	0.0014 (14)	0.0112 (13)
N5	0.034 (2)	0.062 (2)	0.0523 (18)	0.0166 (19)	0.0058 (15)	0.0300 (15)
N6	0.041 (2)	0.057 (2)	0.0267 (13)	0.0099 (17)	0.0015 (15)	0.0037 (14)
01	0.0280 (10)	0.0323 (9)	0.0278 (9)	0.0142 (9)	0.0037 (8)	0.0059 (8)
O2	0.0315 (15)	0.0534 (16)	0.0404 (14)	0.0173 (13)	0.0048 (12)	-0.0062 (12)
O3	0.0321 (11)	0.0361 (11)	0.0274 (8)	0.0156 (9)	0.0014 (8)	0.0050 (8)
O4	0.055 (2)	0.0667 (19)	0.0686 (19)	0.0307 (17)	0.0039 (16)	0.0270 (15)
O5	0.059 (2)	0.084 (2)	0.0569 (17)	0.0309 (18)	-0.0046 (14)	0.0289 (16)
O6	0.092 (2)	0.092 (2)	0.0308 (12)	0.0423 (19)	-0.0108 (15)	-0.0076 (15)
O7	0.0906 (19)	0.0901 (18)	0.0420 (14)	0.0503 (15)	-0.0127 (14)	-0.0113 (14)
OW1	0.0268 (11)	0.0354 (13)	0.0367 (13)	0.0091 (10)	0.0058 (10)	0.0039 (11)
Со	0.0251 (3)	0.0267 (3)	0.0236 (3)	0.0104 (2)	0.0015 (2)	0.0059 (2)

Geometric parameters (Å, °)

C1—N1	1.314 (5)	C17—C18	1.369 (8)
C1—C2	1.401 (5)	C17—H17	0.9300
C1—H1	0.9300	C18—C19	1.379 (6)
C2—C3	1.365 (6)	C18—H18	0.9300
С2—Н2	0.9300	С19—Н19	0.9300
C3—C4	1.398 (6)	C20—C21	1.379 (5)
С3—Н3	0.9300	C20—C25	1.453 (5)
C4—C12	1.402 (5)	C20—C26	1.503 (6)
C4—C5	1.446 (5)	C21—C22	1.389 (6)
C5—C6	1.366 (6)	C21—H21	0.9300
C5—N3	1.377 (5)	C22—C23	1.368 (6)
C6—N4	1.376 (5)	C22—N5	1.454 (5)
С6—С7	1.420 (5)	C23—C24	1.373 (5)
С7—С8	1.398 (6)	С23—Н23	0.9300
C7—C11	1.416 (5)	C24—C25	1.440 (5)
С8—С9	1.368 (6)	C24—N6	1.448 (5)

C8—H8	0.9300	C25—O3	1.265 (4)
C9—C10	1.389 (6)	C26—O2	1.220 (5)
С9—Н9	0.9300	C26—O1	1.294 (4)
C10—N2	1.322 (5)	N4—H4	0.8600
C10—H10	0.9300	N5—O4	1.215 (5)
C11—N2	1.356 (5)	N5—O5	1.229 (5)
C11—C12	1.447 (5)	N6—07	1.202 (5)
C12—N1	1.363 (5)	N6—O6	1.209 (5)
C13—N3	1.319 (5)	OW1—H1WA	0.81 (6)
C13—N4	1.349 (5)	OW1—H1WB	0.80 (5)
C13—C14	1.475 (5)	Co—N1	2.102 (3)
C14—C19	1.383 (6)	Co—N2	2.095 (3)
C14—C15	1.383 (6)	Co—O1	2.050 (2)
C15—C16	1.388 (6)	$C_0 - O1^i$	2.216 (3)
C15—H15	0.9300	$C_0 = O_1$	1 991 (3)
C16—C17	1 359 (8)	Co-OW1	2 139 (3)
C16—H16	0.9300		()
N1 - C1 - C2	122.5 (4)	C21—C20—C26	1164(3)
N1—C1—H1	118.8	$C_{25} = C_{20} = C_{26}$	1235(3)
C2—C1—H1	118.8	$C_{20} = C_{21} = C_{22}$	120.0(3) 121.5(4)
C_{3} C_{2} C_{1}	119 4 (4)	$C_{20} = C_{21} = H_{21}$	1193
C3—C2—H2	120.3	$C_{22} = C_{21} = H_{21}$	119.3
C1—C2—H2	120.3	C_{23} C_{22} C_{21} C_{21} C_{21} C_{21} C_{22} C_{21}	121.1 (4)
$C_2 - C_3 - C_4$	119 4 (4)	$C_{23} - C_{22} - N_5$	1196(4)
С2—С3—Н3	120.3	$C_{21} - C_{22} - N_{5}$	1193(4)
C4—C3—H3	120.3	C22—C23—C24	118.9 (4)
C_{3} C4 C12	117.8 (3)	C22—C23—H23	120.6
C3—C4—C5	125.9 (3)	C24—C23—H23	120.6
C12—C4—C5	116.3 (3)	C23—C24—C25	123.5 (4)
C6—C5—N3	110.5 (3)	C23—C24—N6	116.4 (4)
C6—C5—C4	121.0 (3)	C25—C24—N6	120.0 (3)
N3—C5—C4	128.5 (4)	O3—C25—C24	121.1 (3)
C5—C6—N4	105.3 (3)	O3—C25—C20	124.0 (3)
C5—C6—C7	124.8 (3)	C24—C25—C20	114.9 (3)
N4—C6—C7	129.9 (4)	O2—C26—O1	122.3 (4)
C8—C7—C11	117.7 (3)	O2—C26—C20	119.4 (3)
C8—C7—C6	127.5 (4)	O1—C26—C20	118.2 (3)
C11—C7—C6	114.8 (3)	C1—N1—C12	118.8 (3)
C9—C8—C7	119.6 (4)	C1—N1—Co	127.4 (2)
С9—С8—Н8	120.2	C12—N1—Co	113.2 (2)
С7—С8—Н8	120.2	C10—N2—C11	119.2 (3)
C8—C9—C10	119.4 (4)	C10—N2—Co	127.0 (2)
С8—С9—Н9	120.3	C11—N2—Co	113.5 (2)
С10—С9—Н9	120.3	C13—N3—C5	104.8 (3)
N2—C10—C9	122.7 (4)	C13—N4—C6	107.2 (3)
N2-C10-H10	118.7	C13—N4—H4	126.4
С9—С10—Н10	118.7	C6—N4—H4	126.4
N2	121.5 (3)	O4—N5—O5	123.0 (4)

N2-C11-C12	116.9 (3)	O4—N5—C22	119.2 (4)
C7—C11—C12	121.7 (3)	O5—N5—C22	117.9 (4)
N1—C12—C4	122.0 (3)	O7—N6—O6	119.1 (4)
N1-C12-C11	116.5 (3)	O7—N6—C24	121.8 (4)
C4—C12—C11	121.5 (3)	O6—N6—C24	118.9 (3)
N3—C13—N4	112.1 (3)	C26—O1—Co	120.4 (3)
N3—C13—C14	125.6 (4)	C26—O1—Co ⁱ	125.8 (2)
N4-C13-C14	122.2 (4)	Co—O1—Co ⁱ	100.87 (10)
C19—C14—C15	119.4 (4)	С25—О3—Со	127.0 (2)
C19—C14—C13	120.8 (4)	Co—OW1—H1WA	116 (4)
C15—C14—C13	119.8 (4)	Co-OW1-H1WB	124 (4)
C14—C15—C16	119.4 (5)	H1WA—OW1—H1WB	102 (5)
C14—C15—H15	120.3	O3—Co—O1	87.05 (10)
C16—C15—H15	120.3	O3—Co—N2	175.08 (14)
C17—C16—C15	120.9 (5)	O1—Co—N2	96.09 (11)
С17—С16—Н16	119.5	O3—Co—N1	98.70 (11)
C15-C16-H16	119.5	O1—Co—N1	167.77 (12)
C16—C17—C18	119.7 (4)	N2-Co-N1	78.95 (12)
С16—С17—Н17	120.1	O3—Co—OW1	88.76 (12)
С18—С17—Н17	120.1	O1—Co—OW1	95.00 (13)
C17—C18—C19	120.5 (5)	N2—Co—OW1	87.20 (12)
C17—C18—H18	119.7	N1—Co—OW1	95.91 (13)
C19—C18—H18	119.7	O3—Co—O1 ⁱ	95.02 (11)
C18—C19—C14	120.0 (5)	O1—Co—O1 ⁱ	79.13 (10)
С18—С19—Н19	120.0	N2—Co—O1 ⁱ	89.30 (11)
С14—С19—Н19	120.0	N1—Co—O1 ⁱ	89.56 (11)
C21—C20—C25	119.9 (4)	OW1—Co—O1 ⁱ	172.82 (12)

Symmetry codes: (i) -x, -y, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N4—H4···O6 ⁱⁱ	0.86	2.17	2.948 (5)	150
OW1—H1WA····N3 ⁱⁱⁱ	0.81 (6)	2.03 (6)	2.831 (5)	172 (5)
OW1—H1WB····O2 ^{iv}	0.80 (5)	1.88 (5)	2.662 (4)	165 (5)

Symmetry codes: (ii) *x*-1, *y*, *z*-1; (iii) -*x*, -*y*+1, -*z*+1; (iv) -*x*+1, -*y*, -*z*+1.

Fig. 1

Fig. 2

Fig. 3

